Sign up for your FREE personalized newsletter featuring insights, trends, and news for America's Active Baby Boomers

Newsletter
New

Debiased Multimodal Understanding For Human Language Sequences

Card image cap

arXiv:2403.05025v3 Announce Type: replace Abstract: Human multimodal language understanding (MLU) is an indispensable component of expression analysis (e.g., sentiment or humor) from heterogeneous modalities, including visual postures, linguistic contents, and acoustic behaviours. Existing works invariably focus on designing sophisticated structures or fusion strategies to achieve impressive improvements. Unfortunately, they all suffer from the subject variation problem due to data distribution discrepancies among subjects. Concretely, MLU models are easily misled by distinct subjects with different expression customs and characteristics in the training data to learn subject-specific spurious correlations, limiting performance and generalizability across new subjects. Motivated by this observation, we introduce a recapitulative causal graph to formulate the MLU procedure and analyze the confounding effect of subjects. Then, we propose SuCI, a simple yet effective causal intervention module to disentangle the impact of subjects acting as unobserved confounders and achieve model training via true causal effects. As a plug-and-play component, SuCI can be widely applied to most methods that seek unbiased predictions. Comprehensive experiments on several MLU benchmarks clearly show the effectiveness of the proposed module.


Recent